

Effective from Session: 2023-24									
Course Code	CS485	Title of the Course	Data Security and Threat Analysis	L	Т	Р	С		
Year	4	Semester	7	3	1	0	4		
Pre-Requisite	NIL	Co-requisite	NIL						

	Course Objectives
•	This course will examine legal, policy, and enterprise issues and problems related to security and privacy Learn about the Cyber Fraud and its Protection
•	Knowledge of laws and regulations concerning information security from both data protection and law enforcement perspectives.
•	Knowledge and implementation of Cyber Laws
•	Electronic data will be the focus, but other forms of information also will be considered

	Course Outcomes							
CO1	To understand the cyber law and how it's work.							
CO2	D2 It will give you practical approach on tools.							
CO3	In this module you will learn password policy and how to create safe password.							
CO4	O4 This module helps to get how to protect from cyber fraud.							
CO5	It will help to get documentation about the reporting and data policy.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	CYBER LAW- UNDERSTANDIN G OPERATING SYSTEMS	Introduction to cyber crime and cyber law. Statistics of cyber crime in India and world, Type of Cyber Crime. How to report the cyber crime Law Enforcement and cyber crime, security compliance ISO27001, ISO27002, COBIT5, NCHPC, the basics of IP Addresses. Types of Linux and their tools for scanning network.	8	CO1
2	SECURITY IMPLEMENTATIO N	Networking scanning ports scanning vulnerability scanning with Network mapper and zenmap Introduction to Footprinting, what is firewall and types of firewall, Security Requirements, Reliability and Integrity, Sensitive data, Inference, Multilevel databases, SQL Injections Vulnerability, Security planning, Risk analysis. Securing the Operating System with Admin Privileges with metasploitable2, Information and law, Rights of Employer Security, Case studies of Ethics, Digital Analysis, Digital Evidence and Forensic Tools	8	CO2
3	CYBER CRIME AND PASSWORD MANAGEMENT	Introduction of crimes and how social engineering work, protect ourselves from phishing and communication frauds, Identity Theft, Cyber Bullying, Cyber Stalking, Cyber Harassment, Cyber Terrorism, Cyber Wars and Sex Crimes over Internet – Prostitution, Child Pornography. What are the passwords policy, The Challenges of Password Management, tools responsible to crack the passwords Single Password v/s Multiple Passwords, Considerations for Using, Different Passwords For Different Applications, Good Password Management Policies and User. multi steps authentication	8	CO3
4	CYBER FRAUD AND SECURITY MODELS	Definition of Computer Fraud or Cyber Fraud – Characteristics Cyber Fraud Offense, fraud related Offenses, Law Enforcement Options, Different methods for track down cybercrimes. Introduction to Security models, basics of cryptography for encryption, Multi-factor authentication versus multi-step authentication, Multi-factor authentication methods, security models for cloud security and IOT mobile security Recovery and risk analysis, auditing and reporting, Analysis and Logging, tools for responsible for exploitation and provide security Recovery and data backup, Security policy development, System Restore.	8	CO4
5	COPYRIGHT – IT AND DATA PRIVACY ACTS	Introduction, Digital Signature, Secure Electronic records and secure digital signatures, Digital Signature Certificates, Offences covered under IT Act 2000, Major Amendments in IT Act. Understanding Assignment issues Commissioned work, Copyright issues over internet, Legal Issues and Software Copyright Jurisdiction Issues, Copyright Infringe Remedies of Infringement Multimedia Software Piracy, 8 principles of GDPR and Data Protection Act Reporting and structure of reporting the case or victim report.	8	CO5
Referen	tee Books:	row Purt, Christing Magroup and Thomas C. Padman, Customer Data and Privacy. The Insish	ta Vou Need	from
1.	Harvard Business	rew Burt, Christine Moorman and Thomas C. Redman - Customer Data and Privacy: The Insigh	its You meed	nom

2. Naavi – Personal Data Protection Act of India (PDPA 2020)

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO1	3	2	1	2	1	2	-	2	3	1	2	3	2	1	2	1	2	-
CO2	2	3	1	3	1	2	-	1	1	2	1	2	3	1	3	1	2	-
CO3	1	2	1	2	2	3	-	1	2	2	3	1	2	1	2	2	3	-
CO4	2	3	1	3	1	1	-	1	2	1	2	2	3	1	3	1	1	-
CO5	2	3	2	1	2	1	-	2	1	2	1	2	3	2	1	2	1	-

Effective from Session: 2022	2-23						
Course Code	CS-410	Title of the Course	Distributed Systems	L	Т	Р	С
Year	IV	Semester	VII	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 Thi son Ain Rev 	s course develops a bas ne of the design choices n is to develop a workab yeal different types of ci	introduce the student to the areas of cryptography and cryp sic understanding of the algorithms used to protect users of behind these algorithms. Ile knowledge of the mathematics used in cryptology in this pher generation method to solve engineering and other prob applications of cryptography and network security.	online cours	and to	unders	tand

	Course Outcomes
CO1	Understand the software and hardware concepts of distributed systems
CO2	Evaluate and analyze the issues and implementations of deadlock detection and the
	agreement problems.
CO3	Analyze the RMI, RPC and security issues, replication and fault tolerance in the distributed
	systems.
CO4	Compare and analyze the flat and nested transactions, applications and analysis of
	locks in view of distributed systems, File systems and recent advances.
CO5	Implement and analyze distributed multimedia, CORBA RMI, Java RMI, CORBA
	services.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	CHARACTERIZA TION OF DISTRIBUTED SYSTEMS:	Introduction: Examples of Distributed Systems, Resource Sharing and the Web Challenges. System Models Architectural Models, Fundamental Models, Theoretical Foundation for Distributed System: Limitation of Distributed System, Absence of Global Clock, Shared Memory, Logical Clocks, Lamports & Vectors Logical Clocks, Causal Ordering of Messages, Global State, Termination Detection. Distributed Mutual Exclusion: Classification of Distributed Mutual Exclusion, Requirement of Mutual Exclusion Theorem, Token Based and Non-Token Based Algorithms, Performance Metric for Distributed Mutual Exclusion Algorithms.	8	1
2	DISTRIBUTED DEADLOCK DETECTION:	System Model, Resource vs Communication Deadlocks, Deadlock Prevention, Avoidance, Detection & Resolution, Centralized Dead Lock Detection, Distributed Dead Lock Detection, Path Pushing Algorithms, Edge Chasing Algorithms. Agreement Protocols: Introduction, System Models, Classification of Agreement Problem, Byzantine Agreement Problem, Consensus Problem, Interactive Consistency Problem, Solution to Byzantine Agreement Problem, Application of Agreement Problem, Atomic Commit in Distributed Database System.	8	2
3	DISTRIBUTED OBJECTS AND REMOTE INVOCATION:	Communication Between Distributed Objects, Remote Procedure Call, Events and Notifications, Security: - Overview of Security Techniques, Cryptographic Algorithms, Cryptography Pragmatics, Needham Schroeder, Kerberos, SSL & Millicent, Replication: System Model and Group Communication, Fault – Tolerant Services, Highly Available Services, Transactions with Replicated Data.	8	3
4	TRANSACTIONS AND CONCURRENCY CONTROL:	Transactions, Nested Transactions, Locks, Optimistic Concurrency Control, Timestamp Ordering, Comparison of Methods for Concurrency Control. Distributed Transactions: Flat and Nested Distributed Transactions, Atomic Commit Protocols, Concurrency Control in Distributed Transactions, Distributed Deadlocks, Transaction Recovery, Distributed File Systems: File Service Architecture, Sun Network File System, The Andrew File System, Recent Advances.	8	4
5	DISTRIBUTED SHARED MEMORY(DSM):	Architecture, Algorithms for implementing DSM, Client- Server Algorithm, Migration Algorithm, Read Replication Algorithm, Full Replication Algorithm. Distributed Multimedia Systems: Introduction, Characteristics of Multimedia data, Quality of service management, Resource management, Stream Adaption. Case Study: CORBA RMI, CORBA Services, Java RMI.	8	5
	ce Books:			
1. Coulo	oris, Dollimore, Kindber	g," Distributed systems: Concepts and Design". PearsonEducation Asia, 3ed.		

2. Sighal and Shivratri," Advanced Concepts in Operating Systems", Mc Graw Hill.

e-Learning Source:

PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	3	2	1	1	3	1	1	1	1	1	3	2	1	1	
CO2	3	3	3	2	1	1	1	1	1	1	1	2	3	2	1	
CO3	3	2	1	1	2	3	2	2	3	1	1	3	1	2	2	
CO4	3	2	2	2	3	3	1	1	1	1	1	2	2	3	2	
CO5	3	1	1	1	1	2	1	1	1	1	1	2	2	2	1	

Effective from Session: 2016-17											
Course Code	CS-412	Cryptography and Network Security	L	Т	Р	С					
Year	IV	Semester	VII	3	1	0	4				
Pre-Requisite	None										
Course Objectives	The aim of th This course d design choice Aim is to dev	is course is to introduce levelops a basic underst is behind these algorithm elop a workable knowle	ns of cryptography and network security. the student to the areas of cryptography and cryptanalysis. anding of the algorithms used to protect users online and ns. dge of the mathematics used in cryptology in this course. ration method to solve engineering and other problems.		erstand	some of	f the				

	Course Outcomes
CO1	Compare and analyze various Cryptographic Techniques
CO2	Understanding various Symmetric Key Distribution techniques
CO3	Apply, analyze and compare various public key cryptography techniques
CO4	Implement Digital Signature techniques
CO5	Understand the various Security Applications

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to OSI Security Architecture:	Security Attacks, Services and Mechanisms, Introduction to Cryptology. Conventional Encryption: Conventional Encryption Model, Classical Encryption Techniques – Substitution Ciphers: Caesar Cipher, Monoalphabetic Cipher, Playfair Cipher, Hill Cipher, Polyalphabetic Cipher, One-Time Pad; Transpositions Ciphers: Rail Fence Technique; Rotor Machines, Cryptanalysis, Steganography. Modern Block Ciphers- Block Ciphers Principles: Stream & Block Ciphers, Fiestal Cipher, Shannon's Theory of Confusion and Diffusion, S-DES, Data Encryption Standards (DES): DES Encryption and Decryption, Strength of DES.	8	1
2	Block Cipher Modes of Operation:	ECB, CBC, CFB, OFB, CTR, Triple DES: Double DES, TDES with Two Keys, TDES with Three Keys. Symmetric Key Distribution using KDC, Random Number Generation: Use of Random Numbers, Pseudo Random Number Generators, Cryptographically Generated Random Numbers, Blum BlumShub Generator. Introduction to Graph, Ring and Field, Prime and Relative Prime Numbers, Modular Arithmetic, Fermat's & Euler's Theorem, Primality Testing, Euclid's Algorithm.	8	2
3	Principles of Public Key Cryptosystems:	Introduction, Application & Requirement; RSA Algorithm: Computational Aspects, Security of RSA; Diffie-Heilman Key Exchange Algorithm, Introductory Idea of Elliptic Curve Cryptography. Message Authentication & Hash Functions: Authentication Requirements, Authentication Functions, Message Authentication Codes (MAC), Hash Functions: Requirement for a Hash Function, Simple Hash Functions, Security of Hash Function & MAC, MD5 Message Digest Algorithm, Secure Hash Algorithm (SHA-1).	8	3
4	Digital Signatures:	Requirements, Direct & Arbitrated Digital Signature, Protocols: Mutual & One way Authentication; Digital Signature Standard (DSS): DSS Approach, Digital Signature Algorithm. Authentication Applications: Kerberos Version 4 & Difference between Kerberos v4 & v5, Kerberos Realms; X.509 Authentication Service: Authentication Procedures, Directory Authentication Service; Electronic Mail Security – Pretty Good Privacy (PGP): Operational Description, Cryptographic Keys, Key Rings, Public Key Management.	8	4
5	IP Security:	Architecture, Authentication Header, Encapsulating Security Payloads, Combining Security Associations, Key Management; Web Security: Secure Socket Layer & Transport Layer Security, Secure Electronic Transaction (SET). System Security: Intruders, Viruses and Related Threats: Malicious Programs, The Nature of Viruses, Types of Viruses, Macro Viruses, Email Viruses; Firewall: Firewall Design Principles, Trusted Systems.	8	5
	ce Books:			
1. Willia	am Stallings, "Cryptogra	phy and Network Security: Principles and Practice" Prentice Hall, New Jersey.		
2. Johan	nes. A. Buchmann, "Int	roduction to cryptography", Springer Verlag. Bruce Schiener, "Applied Cryptography".		
e-Lear	rning Source:			

e-Learning Source:

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
3	3	2	2	2								3	2	2
2	2	2	2	2								2	2	1
3	2	2	1	2								3	2	1
3	2	2	2	1	2	1						3	2	1
3	2	3	2	2	1	1	1					3	2	2
	2 3 3	3 3 2 2 3 2 3 2 3 2	3 3 2 2 2 2 3 2 2 3 2 2 3 2 2	3 3 2 2 2 2 2 2 3 2 2 1 3 2 2 2	3 3 2 2 2 2 2 2 2 2 3 2 2 1 2 3 2 2 2 1	3 3 2 2 2 2 2 2 2 2 3 2 2 1 2 3 2 2 2 1	3 3 2 2 2 2 2 2 2 2 3 2 2 1 2 3 2 2 2 1 3 2 2 2 1	3 3 2 2 2 2 2 2 2 2 3 2 2 1 2 3 2 2 1 2 3 2 2 2 1	3 3 2 2 2 2 2 2 2 2 3 2 2 1 2 3 2 2 1 2 3 2 2 2 1	3 3 2 2 2 2 2 2 2 2 3 2 2 1 2 3 2 2 1 2 3 2 2 1 2	3 3 2 2 2 2 2 2 2 2 3 2 2 1 2 3 2 2 1 2 3 2 2 1 2	3 3 2 2 2 2 3 2 2 2 2 3 2 2 1 2 3 2 2 1 2 3 2 2 1 2	3 3 2 2 2 2 3 3 3 2 2 2 3 3 2 2 2 2 2 2 3 2 2 1 2 3 3 2 2 1 2 3 3 2 2 2 1 3	3 3 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 3 2 2 1 2 1 3 2 2 1 2 1

Effective from Session: 2010	5-17						
Course Code	CS-415	Title of the Course	Fuzzy Logic & Neural Networks	L	Т	Р	С
Year	IV	Semester	VII	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	 To intugenetic Develo Reveal Unders with er Discuss 	algorithm-based system p the skills to gain a bas different applications o tand the theory and app nphasis on image proces s neural networks and	Soft Computing such as Artificial Neural Networks, Fuz as and their hybrids. the understanding of neural network theory and fuzzy logic t f these models to solve engineering and other problems.	heory.	eering a	pplicat	ions

	Course Outcomes
CO1	Learn about soft computing techniques and their applications.
CO2	Analyze various neural network architectures.
CO3	Enable students to understand different Clustering Algorithms.
CO4	Define the fuzzy systems.
CO5	Identify and select a suitable Soft Computing technology to solve the problem: construct a solution and implement a Soft Computing solution.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction	History of Neural Networks, Structure and Function of a Single Neuron, Architectures and Their Applications, Supervised Learning: Single Layer Networks: Perceptron's, Linear Separability, Perceptron Training Algorithms and Their Modifications: Pocket Algorithm and Adaline. Supervised Learning: Multiplayer Networks: Multilevel Discrimination, Preliminaries, and Backpropagation Algorithm, Setting the Parameters Values, Accelerating the Learning Process.	8	1
2	Adaptive Multilayers Networks:	Network Pruning Algorithms, Marchand Algorithm, Upstart Algorithm, Cascade Correlation. Prediction Networks: Feed Forward Networks for Forecasting, Recurrent Networks (Partially, Fully), Radial Basis Functions and Probabilistic Neural Networks.	8	2
3	Unsupervised Learning:	Winner-Take-All Networks: Hamming Networks, Maxnet. Learning Vector Quantization, Counter Propagation Networks (Forward Only Counter Propagation networks), Adaptive Resonance Theory (ART1), K-Means Clustering Algorithms, Kohonens Self Organization Maps, Principal Component Analysis.	8	3
4	Fuzzy Logic:	Fuzzy Sets, Properties, Operation on Fuzzy Sets, Fuzzy Relations, Operation on Fuzzy Relations, Fuzzy IF-THEN Rules, Variable Inference Techniques, Fuzzification and Defuzzification Methods, Fuzzy System Design.	8	4
5	Associative Models:	Auto-Association, Hetro-Association, Hopefield Networks, Brain State-In-ABox Networks, and Boltzman Machines. Optimization Methods: Optimization Using Hopefield Networks, Introduction to Simulated Annealing and Ant Colony Optimization and Evolutionary Computation, Introduction to Hybrid Systems, Introduction to Deep Learning.	8	5
Referen	ce Books:			
1. Kisha	n Mehrotra, Chilukuri	K. Mohan, Sanjay Ranka, Elements of Artificial Neural Networks, MIT Press/Penram Internation	al.	

2. Simon Haykin, Neural Network a comprehensive Foundation, Macmillan College, proc, Con, Inc.

3. Ross T.J., Fuzzy Logic with Engineering Applications, McGraw-Hill.

4. Zurada J.M., Introduction to Artificial Neural Systems, Jaico Publishers.

5. Riza C. Berkiu and Trubatch, Fuzzy system Design Principles, Building Fuzzy IF-THEN Rule Bases, IEEE Press.

6. Goldberg D.E., Genetic Algorithms in Search Optimization and Machine Learning, Addison Wesley.

7. Intelligent Hybrid Systems, SuranGoonatilake and Sukhdev Khebbal (Eds.), Intelligent Hybrid Systems, John Wiley.

8. Dorigo and Thomas Stützle, Ant Colony Optimization, MIT Press.

e-Learning Source:

PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	3	3	1	1	3						2	1	1
CO2	3	2	3	2	1	1						1		
CO3	3	2	1	2		2	3					3	2	
CO4	3	2	2	2	3	3						2		3
CO5	3	1	1	1	1	2	1					2	1	

Effective from Session: 2010	Effective from Session: 2016-17										
Course Code	CS-417	Title of the Course	Mobile Computing	L	Т	Р	С				
Year	IV	Semester	VII	3	1	0	4				
Pre-Requisite	None	Co-requisite	None								
Course Objectives	 To give 	the knowledge of slidin the knowledge of the C the knowledge of netwe the knowledge of nouti the knowledge of TCP the knowledge of cong the knowledge of quali	et switching and message switching. ng window protocol. CDMA. ork layer protocols viz. Ipv4, ARP, RARP. ng. & UDP. estion control.								

	Course Outcomes
CO1	To understand and compare the various wireless communication technologies.
CO2	To visualize the various important steps in GSM communication.
CO3	To specify and identify the requirement the mobile IP and Transport Protocol.
CO4	To examine and simulate the important aspects of Mobile Ad hoc Networks.
CO5	To apply the knowledge gained to design and develop a mobile application.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Wireless Communication:	Application, Frequencies for radio transmission, Signals, Antennas, Signal propagation, Multiplexing: Space division multiplexing, Frequency division multiplexing, Time division multiplexing, Code division multiplexing, Modulation: Amplitude shift keying, Frequency shift keying, Phase shift keying, Advanced frequency shift keying, Advanced phase shift keying, spread spectrum: Direct sequence spread spectrum, Frequency hopping spread spectrum, Cellular systems.	8	1
2	Channel Allocation:	Motivation for a specialized MAC, Hidden and exposed terminals, Near and far terminals, SDMA, FDMA, TDMA, Fixed TDM, Classical Aloha, Slotted Aloha, Carrier sense multiple access, Carrier sense multiple access with collision detection, Multiple access with collision avoidance.	8	2
3	Telecommunicatio ns Systems:	GSM: Mobile services, System architecture, Radio interface, Protocols, Localization and calling, Handover, Security; Satellite systems: History, Applications, Basics of GEO, LEO and MEO, Routing, Localization, Handover, Examples; GPRS.	8	3
4	Wireless LAN:	Infra-red vs radio transmission, Infrastructure and ad-hoc network, IEEE 802.11: System architecture, Protocol architecture, Physical layer, medium access control layer, MAC management, 802.11b, 802.11a, Bluetooth: User scenarios, Architecture, Radio layer, Baseband layer. Introduction to WAP architecture and Protocol stack.	8	4
5	Mobile network layer:	Mobile IP: Goals, assumptions and requirements, Entities and terminology, IP packet delivery, Agent discovery, Registration, Tunneling and encapsulation, Optimizations, Reverse tunneling, IPv6, Dynamic host configuration protocol.	8	5
-		delivery, Agent discovery, Registration, Tunneling and encapsulation, Optimizations,	8	5

Reference Books:

1. Jochen Schiller, "Mobile Communications, Pearson Education, 2nd Edition, 2003.

2. Dharma Prakash Agrawal & Qing-A Zeng "Introduction to Wireless & Mobile Systems", Thomson Brooks/Cole, 2nd Edition 2003.

3. Krzysztof Wesolowski, "Mobile Communication Systems", John Wiley & Sons, Ltd.

4. Ron Olexa, "Implementing 802.11, 802.16 and 802.20 Wireless Networks, Elsevier

e-Learning Source:

PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO															
CO1	3	3	2	1	1	3						3	1	1	
CO2	3	3	3	2	1	1						2			3
CO3	3	2	1	1	2	2	3					3	2		3
CO4	3	2	2	2	3	3						2		4	
CO5	3	1	1	1	1	2	1					2	1		4

Effective from Session: 2016-17											
Course Code	CS-424	Title of the Course	SciLab	L	Т	Р	С				
Year	Ι	Semester	Ι	0	0	2	1				
Pre-Requisite	None	Co-requisite	None								
Course Objectives	The aim of th	is unit is to obtain the n	ecessary knowledge to solve numerical problems through Solve	ciLab o	capaciti	es.					

	Course Outcomes
CO1	Given a problem, would be able to analyze the problem and design an efficient algorithm to solve it by using & amp; modifying classical
	design techniques or creating a new solution technique
CO2	For an algorithm given all the required parameters, would be able to analyze the algorithm and evaluate its utility in the given situation
CO3	Given more than one solution for the problem, would be able to evaluate and compare them using standard mathematical techniques and select
	the best solution
CO4	For a design problem given, would be able to compare and evaluate different Data Structures available and modify or create new them for the
	same

S. No.	List of Experiments	Contact Hrs.	Mapped CO
1	Installing , Expressions: Show mathematical expressions with numbers Variables, Diary command, Define symbolic constants. Basic functions, suppressing output (;), help, clc		
2	Vector Operations , define vector, Calculate length of a vector. Perform mathematical operations on Vectors such as addition, subtraction and multiplication. Define a matrix, calculate size of a matrix, Perform mathematical operations on Matrices such as addition, subtraction and multiplication.		
3	Matrix Operations, Access the elements of Matrix, Determine the determinant, inverse and eigen values of a matrix, define special matrices, perform elementary row operations, Solve the system of linear equations.		
4	Conditional Branching, 'if' and 'then' with the example, use of the 'else' keyword use of the 'else if' keyword, example for select		
5	Iteration, explain syntax of 'for' statement- tell that the variable iterates over a list/vector/matrix.		
6	Scripts and Functions, Introduction to the file formats in Scilab.		
7	Plotting 2D graphs, Aboutlinspace: linspace is a linearly spaced vector. Plot a simple graph: x=linspace (12,34,10), y=linspace (1,2,10), plot (x, y) plot2d Use of "clf ()". Configure the title for the plot Configure a legend Divide a graphic window into a matrix of sub-windows using subplot(mnp)		
8	Xcos introduction What is XCOS. What is palette. To collect the blocks from the palette and connect them to construct the block diagram. Set the parameters of different blocks. To setup the simulation parameters. Simulate the constructed block diagram.		
Referen	ce Books:		

PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1															
CO2															
CO3															
CO4															
CO5															

Effective from Session: 2016	5-17											
Course Code	CS-418	Title of the Course										
Year	IV	Semester	VII 3 1 0									
Pre-Requisite	None	Co-requisite	None									
Course Objectives	Study the arc Study of data Study of vari	hitecture of Data Wareh mining functionalities, ous classification and p	rehouse and its building blocks. House and the essential processes in building a data warehou related technologies and its techniques. rediction algorithms. and current trends in data mining.	ise.								

	Course Outcomes
CO1	Develop a strong foundation of knowledge about data warehouse and related techniques.
CO2	Design and build a data warehouse from the available historical data and perform OLAP operations to discover knowledge.
CO3	Pre-process the data using cleaning, integration, transformation and reduction and find associations and correlations among that data.
CO4	Classify the given dataset by using statistical and probabilistic models to predict the class labels of new data.
CO5	Perform cluster analysis by using some major clustering methods and work on the recent advancements on text and web mining.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Overview & Concepts	The Compelling Need for Data Warehousing: Introduction to Data Warehousing, Failures of Past Decision Support System, Data Warehouse Building Blocks: -Nature of data in Datawarehouse, OLAP in the Data Warehouse: Major Features and Functions, OLAP Models, Comparison between operational Data Base Systems & Data warehouse.	8	1
2	Data Warehouses and Data Marts	Overview of Components, Meta data & its types, Multidimensional Data Model: - Data cubes, Schemas for multidimensional databases, concept hierarchies, OLAP operations in multidimensional data models, Data Warehouse Architecture: - 3-tier architecture, Data Extraction, Transformation, and Loading, Data Quality: Why is data Quality Critical? Data Quality Challenges.	8	2
3	Data Mining	Introduction, Data Mining Functionalities, Classification of Data Mining System; Major Issues in Data Mining, Data Preprocessing: Preprocess, Descriptive Data Summarization, Data Cleaning, Data Integration & Transformation, Data Reduction, Mining Frequent Patterns, Association, and Correlations, Basic Concept, Efficient & Scalable Frequent Item set Mining Methods, Mining Various Kinds of Association Rules.	8	3
4	Classification & Prediction	Issues, Classification by Decision Tree Induction, Bayesian Classification, Classification by Back Propagation, Associative Classification, nearest neighbor classification, Prediction.	8	4
5	Cluster Analysis	What is Cluster Analysis, Types, Categorization of Major Clustering Methods, Partitioning Methods, Hierarchical Methods- cure and chameleon, Density-Based Methods: DBSCAN &OPTICS, Wave Cluster, CLIQUE. Current trends: Text mining, web mining.	8	5
Referen	nce Books:			
1.	"Data Warehousing F	undamental" by PaulrajPonniah, John Wiley & Sons INC.		
2.	Data Mining Concepts	s & Techniques by Jiawei Han & Michline Kamber.		
3.	Mallach," Data Wareh	ousing System", McGraw Hill		
4				

4. M.H. Dunham, "Data Mining: Introductory and Advanced Topics" Pearson Education

e-Learning Source:

https://nptel.ac.in/courses/106106168

PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	2			2	1					2		2			
CO2		2		1			2							1		
CO3	2		1			1		1				1	1			3
CO4	2			2												
CO5	3		2			1				1				2		

Effective from Session: 2018	Effective from Session: 2018-19													
Course Code	CS-419	Title of the Course	Pattern Recognition L T P											
Year	IV	Semester	VII	3	1	0	4							
Pre-Requisite	None	Co-requisite	None											
Course Objectives	techniques f	or analyzing multidin	I statistical methods for pattern recognition and cover nensional data, including algorithms for classification, The course will also introduce students to active research to	featu										

	Course Outcomes
CO1	Understand basic concepts in pattern recognition along with its mathematical foundation.
CO2	Understand pattern recognition theories, such as Bayes classifier, linear discriminant analysis.
CO3	Gain knowledge about state-of-the-art algorithms used in pattern recognition research.
CO4	Know basic concepts in other major approaches including syntactic methods.
CO5	Get acquainted with recent developments in pattern recognition and its applications.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Introduction	Basics of pattern recognition, Design principles of pattern recognition system, Learning and adaptation, Pattern recognition approaches, Mathematical foundations – Linear algebra, Probability Theory, Expectation, mean and covariance, Normal distribution, multivariate normal densities, Chi squared test	8	1				
2	Statistical Pattern Recognition	Statistical Pattern Recognition: Bayesian Decision Theory, Classifiers, Normal density and discriminant functions.	8	2				
3	Methods Linear discriminant analysis, Expectation-maximization (EM), Hidden Markov Models (HMM), Gaussian mixture models.							
4	Non Parametric Techniques	8	4					
5	Unsupervised Learning and Clustering	Unsupervised Learning & Clustering: Criterion functions for clustering, Clustering Techniques: Iterative square - error partition clustering – K-means, agglomerative hierarchical clustering, Cluster validation.	8	5				
E resou	rces							
https://v	www.coursera.org/learn/	machine-learning (Machine Learning by Andrew Ng on Coursera)						
https://s	scikit-learn.org/stable/do	cumentation.html						
https://w	www.tensorflow.org/guid	e/keras/sequential_model						
https://sl	kim.math.msstate.edu/L	ectureNotes/Machine_Learning_Lecture.pdf						
Referen	ice Books:							
Richard	O. Duda, Peter E. Hart	and David G. Stork, "Pattern Classification", 2nd Edition, John Wiley, 2006.						
C. M. B	ishop, "Pattern Recogni	tion and Machine Learning", Springer, 2009.						

S. Theodoridis and K. Koutroumbas, "Pattern Recognition", 4th Edition, Academic Press, 2009.

								_		_	-	_	_	-	-	
PO- PS O CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3	PSO4
CO 1	3	3	2	1	1	3	1	1	1	1	1	3	2	1	1	
CO 2	3	3	3	2	1	1	1	1	1	1	1	2	3	2	1	
CO 3	3	2	1	1	2	3	2	2	3	1	1	3	1	2	2	
CO 4	3	2	2	2	3	3	1	1	1	1	1	2	2	3	2	

CO 5	3	1	1	1	1	2	1	1	1	1	1	2	2	2	1	
---------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--